The differential equation $\left(x^{2}+a y\right) d x-\left(y^{2}-a x\right) d y=0$ is
a) Not exact
b) exact with $\frac{\partial M}{\partial y}=-a$
c) exact with $\frac{\partial N}{\partial x}=a$
d) homogeneous

The differential equation $\left(y-x y^{2}\right) d x+\left(x^{2} y-x\right) d y=0$ is
a) Not exact
b) exact with $\frac{\partial M}{\partial y}=-x$
c) exact with $\frac{\partial N}{\partial x}=-1+2 x y$
d) exact

There exists a function $u=u(x, y)$ such that $d u=M d x+N d y$ where M and N are functions of x and y. Then which of the following option is always correct for the differential equation $d x+N d y=0$?
a) $\frac{\partial M}{\partial x}=\frac{\partial N}{\partial y}$
b) $\frac{\partial M}{\partial x}=-\frac{\partial N}{\partial y}$
c) $\frac{\partial M}{\partial y}=2 \frac{\partial N}{\partial x}$
d) None of these

For a non exact first order differential equation $M d x+N d y=0$, which of following result lead to give an integrating factor?
a) $\frac{1}{N}\left(\frac{\partial M}{\partial y}+\frac{\partial N}{\partial x}\right)=f(x)$
b) $\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right)=f(y)$
c) $\frac{1}{M}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)=f(x)$
d) $\frac{1}{M}\left(\frac{\partial M}{\partial y}+\frac{\partial N}{\partial x}\right)=f(x)$

The integrating factor of the differential equation $\left(x^{2} y-2 x y^{2}\right) d x-\left(x^{3}-3 x y^{2}\right) d y=0$ is
a) $\frac{1}{x y}$
b) $\frac{1}{x^{2} y}$
c) $\frac{1}{x y^{2}}$
d) $\frac{1}{x^{2} y^{2}}$

The general solution of the equation $x d y-y d x=\left(x^{2}+y^{2}\right) d x$ is
a) $y=x \tan e^{x}$
b) $y=x \tan x$
c) $y=x \tan \left(e^{x}+c\right)$
d) $y=x \tan (x+c)$

The integrating factor of the differential equation $y d x-x d y+\log x d x=0$ is
a) $\frac{2}{x}$
b) $\frac{2}{y}$
c) $-\frac{2}{x}$
d) $-\frac{2}{y}$

The integrating factor of the differential equation $\left(y^{2}+x^{2}\right) d x=2 x y d y$ is
a) $\frac{1}{x y(x-y)}$
b) $\frac{1}{(x-y)(x+y)}$
c) $-\frac{1}{x y(x+y)}$
d) $\frac{1}{x(x-y)(x+y)}$

Under what conditions, the differential equation $[x f(x)-g(y)] d x+[h(x)+y k(y)] d y=0$ is exact?
a) $g^{\prime}(y)=h^{\prime}(x)$
b) $f^{\prime}(x)=-k^{\prime}(y)$
c) $g^{\prime}(y)=-h^{\prime}(x)$
d) $f^{\prime}(x)=k^{\prime}(x)$

A particular solution of the differential equation $p=\sin (y-x p), y(\pi)=0$ is
a) $y=0$
b) $y=x$
c) $y=-x$
d) $y=5$

The general solution of the differential equation $\log (y-p x)=p$ is
a) $y=c x+e^{c}$
b) $y=c x+\log c$
c) $y=-c x$
d) $y=c x-\log c$

Integrating factor of the differential equation $\frac{d y}{d x}-y \sin x=\frac{\sin 2 x}{2}$ is
a) $-\cos x$
b) $e^{\cos x}$
c) $e^{\sin x}$
d) $\sin x$

The solution of the differential equation $\left(x^{2}-5 y\right) d x+\left(y^{2}-5 x\right) d y=0, y(0)=0$ is
a) $x^{3}-y^{3}=3 x y$
b) $x^{3}+y^{3}=5 x y$
c) $x^{3}-y^{3}=15 a x y$
d) $x^{3}+y^{3}=15 x y$

